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* Abstract The direct effects of marine habitat disturbance by commercial fishing 
have been well documented. However, the potential ramifications to the ecological 
function of seafloor communities and ecosystems have yet to be considered. Soft- 
sediment organisms create much of their habitat's structure and also have crucial roles 
in many population, community, and ecosystem processes. Many of these roles are 
filled by species that are sensitive to habitat disturbance. Functional extinction refers to 
the situation in which species become so rare that they do not fulfill the ecosystem 
roles that have evolved in the system. This loss to the ecosystem occurs when there are 
restrictions in the size, density, and distribution of organisms that threaten the biodi- 
versity, resilience, or provision of ecosystem services. Once the functionally important 
components of an ecosystem are missing, it is extremely difficult to identify and under- 
stand ecological thresholds. The extent and intensity of human disturbance to oceanic 
ecosystems is a significant threat to both structural and functional biodiversity and in 
many cases this has virtually eliminated natural systems that might serve as baselines 
to evaluate these impacts. 

INTRODUCTION 

The marine biota is remarkably diverse. There are well over 50 phyla and only one 
is strictly terrestrial; all the rest have marine representatives. Interestingly, all these 
phyla had differentiated by the dawn of the Cambrian, almost 600 million years 
ago, and all evolved in the sea. Since that time the sea has been frozen, experienced 
extensive anaerobic conditions, been blasted by meteorites, and undergone exten- 
sive variations in sea level. Also during this time the continental shelves have been 
fragmented, reshuffled, and coalesced in such a way that the biotic communities 
have been exposed to a wide array of environmental conditions. The present diverse 
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biota reflects the combination of historical events and present physical, chemical, 
and biological dynamics. We review structural patterns and functional processes 
important to the perseverance of this ecosystem and discuss the impact of fishing 
on these patterns and processes. 

Whereas great attention has been paid to the decline in species diversity in 
terrestrial ecosystems, it is apparent that there have also been substantial changes 
in diversity in aquatic systems, albeit changes that may not be so readily de- 
tected. A common perception of marine seafloor biodiversity reflects a dispropor- 
tionate interest in hard bottoms such as coral reefs, kelp forests, and the rocky 
intertidal. This bias is understandable because these hard-bottom communities 
lend themselves to terrestrial comparisons and ecological studies. However, about 
70% of the earth's seafloor is composed of marine soft sediments (Wilson 1991, 
Snelgrove 1999). These soft-sediment habitats can be highly heterogeneous ow- 
ing to interactions between broad-scale factors (e.g., hydrodynamic and 
nutrient regimes) and smaller-scale physical and biological features; nonethe- 
less, the apparent three-dimensional habitat structure imposed by this hetero- 
geneity may not be as obvious as that observed on hard-bottom habitats. Al- 
though these habitats do not always appear as highly structured as some terrestrial 
or marine reef habitats, they do support extremely high species diversity (Etter 
& Grassle 1992, Grassle & Maciolek 1992, Coleman et al. 1997, Gray et al. 
1997, Snelgrove 1999). In fact, the organisms that inhabit the sediments create 
much of the structure in soft-sediment habitats, ranging from the micro-scale 
changes around individual animal burrows to the formation of extensive biogenic 
reefs. 

As well as adding substantively to the variety of species found on earth, soft- 
sediment marine organisms have functional roles crucial to many ecosystem pro- 
cesses. The provision of protein for human consumption and the ecosystems 
that sustain fisheries are clear examples of the products and functions of ma- 
rine ecosystems that benefit humankind. Other processes in which marine benthos 
play important roles include their influence on sediment stability, water column 
turbidity, nutrient and carbon processing, and contaminant sequestering, as well as 
the provision of pharmaceuticals and nutraceuticals and recreational and amenity 
values. 

There is now good evidence that commercial fishing has a profound effect 
on marine ecosystems. Although there is a long history of concern about the 
environmental effects of fishing (Graham 1953, de Groot 1984), it is really only in 
the past decade or two that ecological research efforts have focused in this arena. In 
turn this focus has spawned a number of review articles and books that summarize 
and synthesize the environmental effects of fishing (Dayton et al. 1995, Auster 
& Langton 1999, Jennings & Kaiser 1998, Watling & Norse 1998, Hall 1999, 
Kaiser & de Groot 2000). This information has informed the debate over fisheries 
management and marine conservation, but it also highlights both the challenges 
and opportunities to test our current understanding of interactions between broad- 
scale habitat disturbance to seafloor communities and the functioning of benthic 
ecosystems. 



IMPACTS OF FISHING ON MARINE BIODIVERSITY 

In this review we place studies of the environmental effects of fishing into the 
context of direct and indirect effects on marine biodiversity. We consider biodi- 
versity to have both structural and functional components. The distribution and 
abundance patterns of landscapes, habitats, communities, populations, and geno- 
types form the structural component of biodiversity. Functional components in- 
volve mechanisms that drive interactions between species themselves and between 
them and other components of the environment, as well as other processes gen- 
erating fluxes of energy and matter. We consider impacts on community structure 
and physical changes in habitat structure along with functional changes to seafloor 
ecosystems (benthic-pelagic coupling, nutrient recycling, and biogeochemical pro- 
cesses). Our aim is not to review the literature that addresses the issues of fisheries, 
marine biodiversity, and the spatial and temporal scales of ecosystem resilience, 
but to draw together ecological processes and fishing impacts to focus attention 
on new and integrative research directions. 

Scale-Dependant Disturbance 

Disturbance regimes play a key role in influencing biodiversity (Connell 1977, 
Huston 1994). In marine benthic habitats small-scale natural disturbance plays 
an important role in influencing communities by generating patchiness (Dayton 
1994, Hall et al. 1994, Sousa 1984). Many of the small-scale disturbances that 
impact benthic communities and generate heterogeneity result from the biological 
activities of organisms that live in or feed on the seafloor. The spatial heterogeneity 
created by local disturbance events can account for resource patchiness (Thistle 
1981, Van Blaricom 1982), and ubiquity of opportunistic species in soft-sediment 
habitats. Such heterogeneity is an important component of the functioning of 
ecological systems (Kolasa & Pickett 1991, Legendre 1993, Giller et al. 1994) and 
has implications for the maintenance of diversity and stability at the population, 
community, and ecosystem levels (e.g., De Angelis & Waterhouse 1987, Pimm 
1991, Loehle & Li 1996). 

The fact that natural disturbance is important to soft-sediment communities has 
led to the suggestion that fishing disturbance can positively effect biodiversity. This 
application of Connell's (1977) intermediate disturbance hypothesis is not appro- 
priate because this hypothesis is predicated on disturbance as a means of reducing 
resource monopolization such that diversity is enhanced. Direct competition for 
food or space, however, has been difficult to demonstrate as an important process in 
soft sediments, especially over broad spatial scales (Olafsson et al. 1994, Peterson 
1979, Wilson 1991). Theoretical consideration of the intermediate disturbance hy- 
pothesis demonstrates that the effects of disturbance on multitrophic level systems 
can, in many situations, have no effect on the coexistence of competitors, as ne- 
cessitated by the hypothesis, or may even cause a monotonic decline in diversity 
(Wootton 1998). Furthermore, the intermediate disturbance hypothesis has not 
been adequately tested over broad spatial scales relevant to fishing disturbance. 
Thus its application across species, community and habitat types, and over various 
scales of disturbance and recovery is unfounded. 

451 



452 THRUSH * DAYTON 

Spatial heterogeneity in community structure is related to the spatial extent 
and/or the frequency of disturbance events; for disturbance to create patchiness it 
must be small relative to the colonization potential of the benthic community, but 
not so small as to enable the adjacent assemblage to quickly infill the disturbed 
patch. This concept is encapsulated in a simple ratio-based model of the effect of 
disturbance on landscapes (Turner et al. 1993). The temporal dimension is consid- 
ered by the ratio of disturbance interval (time between events) to recovery time, 
and the spatial dimension is considered by the ratio of size of the disturbed area to 
size of the habitat. The model simplifies many of the complexities of disturbance- 
recovery dynamics and the potential for recovery processes to change with scale 
in a nonlinear fashion. Nevertheless, consideration of these ratios indicates dis- 
turbance regimes that, through their frequency, extent, or intensity, could result 
in catastrophic change across the seafloor landscape. Even such a simple model 
emphasizes the need to understand the scales of mobility and the processes af- 
fecting successful establishment and growth of potential colonists. Typically in 
soft sediments a wide array of species and life stages are involved in recovery pro- 
cesses within a disturbed patch (Zajac et al. 1998, Zajac 1999, Thrush & Whitlatch 
2001, Whitlatch et al. 2002). The ratio model implies that significant threats to 
the integrity and resilience of marine benthic communities arise when the rate 
of human-induced change exceeds the rate at which nature can respond. This is 
particularly likely to occur where habitat structure and heterogeneity are reduced 
and large areas of habitat have been modified. Slow-growing and -reproducing 
species will be strongly affected, vastly reducing the potential for such species 
to reestablish themselves or colonize new areas. The homogenization of habitats 
and the loss of small-scale patchiness result in the risk of the loss of ecological 
function and natural heritage values in marine ecosystems. 

Fishing as a Disturbance Agent on the Seafloor 

Many types of trawls, dredges, and traps are dragged over or sit on the seafloor 
(Jennings & Kaiser 1998). The type of physical impact the fishing gear has on the 
seafloor depends on its mass, degree of contact with the seafloor, and the speed at 
which it is dragged. The way the gear is designed and operated also influences how 
it interacts with the seafloor and how many species other than the target species 
the gear removes from the seafloor or damages in situ (i.e., by-catch). Not all types 
of gear are used in all locations, and the impact of the gear depends on the habitat 
in which it is used. 

Unfortunately there are limited data on the location and frequency of the area of 
the seafloor swept by fishing gear. The data available usually are based on broad- 
scale fisheries management units and not necessarily related to the spatial variation 
in seafloor habitats or biodiversity. For example, Churchill (1989) summarized 
trawling effort off the Middle Atlantic Bight, an area of intensive fishing pressure. 
The range of effort was quite variable along the coast because fishers do not work 
where there are no fish, but some areas off southern New England were on average 
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exposed to 200% effort. Another typical fishery in northern California trawled 
across the same section of seafloor an average of 1.5 times per year, with selected 
areas trawled as often as 3 times per year (Friedlander et al. 1999). For a scampi 
fishery on the continental slope off New Zealand (200-600 m water depth), Cryer 
et al. (2002) calculated that on average about 2100 km2 of the seafloor was swept 
each year by trawlers. The statistics suggest that within the study area trawlers 
swept about 20% of the upper continental slope each year, although about 80% 
of all scampi trawls were made in an area of about 1200 km2. In some areas 
the extent and frequency of disturbance can be extreme, Pitcher et al. (2000) 
identifies one harbor in Hong Kong where every square meter of the seafloor was 
trawled three times a day. The ecological intensity of response is also determined 
by the resident species; even low-intensity disturbance can significantly affect 
sensitive species (Jenkins et al. 2001). The spatial distribution of fishing effort on 
the seafloor is patchy, reflecting the relative availability of the target species. In 
some cases refining the scale of measurement reveals higher levels of aggregation 
of fishing effort (e.g., Pitcher et al. 2000). Actually, we really do not know the 
global extent of disturbance to the seafloor by fishing. However, the magnitude of 
exploitation of global fishery resources provides some important clues as to the 
general extent of disturbance, with about 25-30% of the world's fishery populations 
overexploited or depleted and a further 40% considered heavily to fully exploited 
(Pauly et al. 1998). Often the scales of measurement of fishing effort (e.g., tens 
to hundreds of square kilometers) are difficult to match with ecological effects, 
as they do not match well with the scales of variability in seafloor ecological 
communities. 

Evaluating the Direct Effects of Habitat Disturbance by Fishing 

Many studies have been conducted to assess the direct effects of habitat disturbance 
by trawling or dredging on benthic communities (Table 1). These studies have been 
conducted in a variety of habitats and locations, generally in shallow water. We 
have reviewed a large number of these studies to offer examples from a variety of 
habitats and locations, rather than attempt a complete list. Our aim is to provide a 
brief summary of the range of effects observed. We hope this list, as well as previ- 
ously mentioned reviews, offer the reader an entr6e into this literature. There are 
a number of important issues to consider when summarizing such a diverse array 
of studies because they encompass a range of intensities and spatial and temporal 
scales of fishing disturbance. Study designs and assessment approaches are also 
widely different. We have summarized statistically significant or nonsignificant ef- 
fects described in the individual papers but refer the reader to Loftis et al. (1991) and 
Nelder (1999) for comments on "significance." We recommend that readers study 
papers of interest in detail to assess for themselves the magnitude of ecological 
effects. 

Marine benthic ecosystems are often challenging systems to study, and precise 
data are rare. Furthermore, the interpretation of results is frequently difficult. For 
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TABLE 1 Summary of effects on subtidal benthic communities reported in recent 
assessments of fishing impacts 

Effects Habitats/depths/location Source 

Removal of biogenic and 

physical habitat structure 

Decreased diversity 
in trawled plots 

Decreased density 
of common echinoderms, 
polychaetes, and molluscs 

Direct mortality of 5-60% 
for species following 
single passage of trawl 

Decreased number of 

organisms, biomass, species 
richness, species diversity, and 

biogenic habitat structure 

6 of 10 common species 
decreased in abundance 

No consistent trends in 

epifauna or infauna; 
high site-to-site variability 

Decreased abundance of 

large epifauna 
and infaunal 
species abundance 

Higher densities of epifauna 
in lightly trawled area; 
higher densities of predator/ 
scavenger worms in 

heavily trawled area 

Large epifauna removed and 

damaged; boulders displaced 

Temporal trends in community 
composition differentiate 
under heavy fishing pressure 

No detectable changes 
in macrobenthic fauna 

Overall decreases in biomass and 
abundance, but site and time 
interaction terms make 
detection of effect difficult 

70% reduction of mearla 
habitat over 4 years 

Sand, 30 m depth; 
Northwest Atlantic 

Mud, 75 m depth and 

heavily trawled; 
35 m less frequently 
trawled; Irish Sea 

Sand, 30 m depth; 
North Sea 

Sand/mud, 10-45 m 

depth; North Sea 

Gravel pavement, 40-80 m 
depth; Georges Bank; 
Northwest Atlantic 

Sand/coarse silt, 10-20 m 

depth; Port Phillip Bay, 
Vic., Australia 

Sand/coarse silt, 10-20 m 
depth; Port Phillip Bay, 
Vic., Australia 

Sand, 10 m depth; Loch Ewe, 
Scotland 

Sand, 180 m depth; central 
California 

Pebble/cobble/boulder, 200 m 

depth; Gulf of Alaska 

Mud, 80 m depth fished and 
50 m unfished sites; North Sea 

Sand, 10 m depth; Botany Bay, 
NSW, Australia 

Mud, 73-96 m depth; 
Gullmarsfjord, Sweden 

Sand/mud, 6-15 m depth; 
Firth of Clyde, Scotland 

Auster et al. 1996 

Ball et al. 2000 

Bergman & Hup 
1992 

Bergman & van 
Santbrink 2000 

Collie et al. 1997 

Currie & Parry 1996 

Currie & Parry 1999 

Eleftheriou & 
Robertson 1992 

Engel & Kvitek 1998 

Freese et al. 1999 

Frid et al. 2000 

Gibbs et al. 1980 

Hansson et al. 2000 

Hall-Spencer & 
Moore 2000 

(Continued) 
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TABLE 1 (Continued) 

Effects Habitats/depths/location Source 

No significant effects on 
biomass or production in area 
of low fishing pressure; under 

high fishing pressure, 
significant decrease in 
biomass and production 

Decrease in infaunal and 

epifaunal biomass, particularly 
bivalves and burrowing urchins, 
only detected at high 
impact site 

Decrease in density of epifauna 
and diversity in stable sand 
habitat; no effects detected 
in unstable sand habitat 

Slight changes in community 
composition in stable habitat; no 
detectable effects on a number of 

species or diversity indices 
in either habitat 

Larger individuals and increased 

density of epifauna in unfished 
area 

Loss of sessile, emergent, high 
biomass species, increase in 
small-bodied infauna 

No effect detected 

Trawl reduced density of large 
epifauna about 15% on each 

pass; trawl flown 15 cm above 
seafloor had no detectable 
impact on large epifauna 

Higher diversity in unfished area; 
sedentary macrofauna more 
abundant in unfished sites; mixed 

response by motile species and 
infaunal bivalves 

Trawls typically removed 5-20% 
of large benthic fauna 

Short-term decreases in biomass 
and abundance of macrofauna; 
number of taxa showed no 
immediate effect but increased 
in trawled area after 7 days 

High impact site muddy sand 
55-75 m depth, low impact 
site sand 40-65 m; North Sea 

High impact site muddy sand 
55-75 m depth, low impact 
site sandy 40-65 m; North Sea 

2 habitats: one stable sand 
with rich epifauna, the other 
mobile sand, 26-34 m depth; 
Anglesey Bay, Irish Sea 

2 habitats: one stable sand 
with rich epifauna, the other 
mobile sand, 26-34 m depth; 
Anglesey Bay, Irish Sea 

Sand, 18-69 m depth; 
English Channel 

Gravel/sand; Isle of Man, 
Irish Seab 

Sand, 120-146 m depth; 
Grand Banks of 
Newfoundland 

50 m depthc; north-west 
shelf, Australia 

Sand, 44-53 m depth; 
eastern Bering Sea 

Sandb, Great Barrier 
Reef Region, Australia 

Sand, 24 m depth; 
Adriatic Sea 

Jennings et al. 2001a 

Jennings et al. 2001b 

Kaiser & Spencer 1996 

Kaiser et al. 1998 

Kaiser et al. 1999 

Kaiser et al. 2000 

Kenchington et al. 2001 

Moran & 
Stephenson 2000 

McConnaughey 
et al. 2000 

Pitcher et al. 2000 

Pranovi et al. 2000 

(Continued) 
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TABLE 1 (Continued) 

Effects Habitats/depths/location Source 

Decrease in epifaunal biomass 
following disturbance; no 

significant impacts on dominant 
molluscs 

Decrease in species richness and 
diversity 

Decrease in small-scale 

heterogeneity of sediment texture 
after trawling 

Higher numbers of epifauna and 

diversity, abundance, and 
biomass of macrofauna outside 
trawled area 

Changes in community structure, 
decreased density of common 
bivalves and polychaetes, 
increased density of nemerteans 

Density decreased, effects on 
number of taxa detected at one 
site only 

Fishing decreased density of 

burrowing urchins, long-lived 
surface dwellers, and diversity 
and increased density of deposit 
feeders and small opportunists 

Numbers of species, individuals, 
and various diversity indices 
increased in fished area 

Barrel sponges (Cliona) 
significantly reduced in abundance 
but recovered in 12 months 

No detectable effect of trawling 

Species diversity, richness, total 
number of species decreased 
with increased fishing effort 

Decrease in numerical dominants 
and changes in sediment food 

quality 

Sand, 120-146 m depth; 
Grand Banks of 
Newfoundland 

Mud, 30-40 m depth; 
Catalan coast 

Sand, 120-146 m depth; 
Grand Banks of 
Newfoundland 

Mud, 200 m depth; Crete 

Mud, 60 m depth; Penobscot 

Bay, Maine 

Sand, 24 m depth. Mercury 
Bay, New Zealand 

Varied sediments 1-48% mud, 
17-35 m depth; Hauraki 
Gulf, N.Z. 

Mud, 30-35 m depth; Gareloch, 
Scotland 

Low relief hard-bottom habitat, 
20 m depth; Georgia 

Sand, Port Royal (8 m depth) 
and St. Helena (30 m depth) 
sounds, S. Carolina 

Sand, 20-67 m depth; north 
Irish Sea 

Silty sand 15 m depth. 
Damariscotta River, Maine 

Prena et al. 1999 

Sanchez et al. 2000 

Schwinghamer et al. 
1996 

Smith et al. 2000 

Sparks-McConkey & 

Watling 2001 

Thrush et al. 1995 

Thrush et al. 1998 

Tuck et al. 1998 

Van Dolah et al. 1987 

Van Dolah et al. 1991 

Veale et al. 2000 

Watling et al. 2001 

asediments with a surface layer of slow-growing unattached coralline algae. 

bdepth not given. 
Csediment type not given. 
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example, Pitcher et al. (2000) documented the removal of 7 tonnes of epifau- 
nal biomass during experimental trawling, but were unable to detect significant 
changes by surveying the density of epifauna on the seafloor. Whereas the direct 
effect of such an impact on benthic communities appears obvious, its magnitude 
has been difficult to evaluate with regard to other components of the ecosystem. 
There is often a failure to detect the effect of experimental fishing disturbance 
in areas exposed to extreme natural disturbance to the seafloor (e.g., storms or 
very strong tidal flows) (Hall et al. 1990, Brylinsky et al. 1994, Kaiser & Spencer 
1996, DeAlteris et al. 1999). Effects are not always consistent across sites, even 
within studies. Given the variety of experimental designs and habitats studied, 
these variations in response are far from surprising. Nevertheless these studies 
emphasize a number of changes in benthic communities including loss of habitat- 
structuring species, changes in species richness, and loss of large and long-lived 
organisms. 

One of the most conspicuous long-term physical effects of bottom fishing is 
the homogenization of the substratum and reduced species diversity (Veale et al. 
2000). Thus, apart from all the usual difficulties of study design, the history of 
fishing disturbance can make it impossible to control experimental studies. Some 
European and Adriatic waters have a long history of fishing by bottom trawling 
(de Groot 1984, Kaiser & de Groot 2000, Pranovi et al. 2000). Frid et al. (2000) 
considered reports from the North Sea going back to the 1920s and concluded that 
fishing practices have changed benthic communities in some parts of the North Sea; 
in other areas fishing impacts could not be evaluated without a longer time series 
of data. Aronson (1989, 1990) argued that overfishing has virtually eliminated 
the evolutionarily new teleost predators, resulting in a rebirth of the Mesozoic-like 
system dominated by echinoderms and crustacea. Recent analyses of fish predation 
in the North Sea provide some support for this view (Frid et al. 1999). There is 
also a long history of transformation of marine coastal ecosystems in the western 
Atlantic (Steele & Schumacher 2000, Jackson 2001) and eastern Pacific (Dayton 
& Tegner 1984, Dayton et al. 1998). There are few, if any, unfished habitats with 
economically exploitable stocks outside the Antarctic region (Dayton et al. 2000). 
Human disturbances that exceed the rate of natural recovery dynamics have been 
underway for decades and possibly centuries. Some marine organisms have been 
driven to extinction by human activities (e.g., the Atlantic gray whale, the great 
auk). Others are probably close to extinction, for example, the Irish ray (Brander 
1981), the barndoor skate (Casey & Myers 1998), and the white abalone (Tegner 
et al. 1996). A recent review listed 82 species and subspecies of endangered fish 
in the United States (Musick et al. 2000). Over time, repeated intense disturbance 
will select for species with appropriate facultative responses, and communities 
are likely to become dominated by juvenile stages, mobile species, and rapid 
colonists. Such broad-scale descriptions point to the problem of identifying effects 
in ecological systems that are potentially already affected. The important point is 
that the potential for both direct and indirect effects on biodiversity cannot be 
ignored because of variability in ecological response across such a diverse array 
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of studies. As always, manipulative experiments are useful but difficult to control 
properly and limited in scope. 

The broader-scale implications of fishing impacts have been inferred from ben- 
thic surveys and time-series data (Reise 1982, Holme 1983, Langton & Robinson 
1990, Cranfield et al. 1999, Kaiser et al. 2000). One valuable approach to in- 
tegrating experimental results into broader-scale patterns is to develop iterative 
procedures and test a priori hypotheses with data collected over broad scales. This 
process can provide good evidence of large-scale change (Thrush et al. 1998). The 
use of effort data in the rapidly expanding trawl fisheries of the eastern Bering 
Sea enabled McConnaughey et al. (2000) to contrast areas with different expo- 
sure to fishing disturbance and investigate the long-term consequences for benthic 
communities. They found that the numbers of sedentary epifauna (animals such 
as anemones, soft corals, sponges, bryozoans, etc.) and diversity and the niche 
breadth of sedentary taxa decreased with fishing. Mixed patterns of response were 
apparent for mobile epifauna and infaunal bivalves, suggesting species-specific 
responses based on life-history characteristics. It is important to note that the clear 
changes recorded in this study were documented in an area with a high potential for 
storm-generated wave disturbance, emphasizing the value of carefully designed 
and analyzed assessments. 

The Potential for Functional Changes in Biodiversity 
The studies described above provide evidence for direct changes in response to 
habitat disturbance by fishing, but we must also consider the potential for changes in 
the functional roles played by organisms, communities, and ecosystems. Usually, 
as density declines the size of the individuals and their spatial distribution also 
change; thus, although not biologically extinct, they may be functionally so, being 
unable to fulfill their natural roles in community and ecosystem function (Dayton 
et al. 1998). 

In soft-sediment habitats the creation of small-scale habitat structure by bio- 
genic features can play key roles in influencing diversity and resilience. Some 
benthic fishes, such as rays, have an important influence on small-scale habitat 
structure (Van Blaricom 1982, Levin 1984, Thrush et al. 1994). Organisms that 
live at the sediment surface or create mounds, tubes, and burrows within it also 
provide habitat structure and frequently have important roles in the sequestering 
and recycling processes essential to ecosystem function. Studies listed in Table 1 
provide evidence of direct effects on the density and distribution of such organ- 
isms; in some cases they are the most susceptible to habitat disturbance by dredging 
and bottom trawling. As yet, however, there have been no direct assessments of 
the implications of the loss of these functionally important species to ecosystem 
function and resilience. 

Alteration to marine food webs through changes in the abundance and size 
distribution of fish populations could have important consequences for benthic 
communities. Many types of fish prey upon and disturb the seafloor; all rays and 
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some sharks and bony fishes that make up many important demersal fisheries 
(e.g., sparids, scorpaenids, labrids, gadoids, pleronectids) are important benthic 
predators, although their wider ecological role is rarely studied (but see Sala & 
Ballesteros 1997). Many fishes have life-history characteristics that make them 
extremely vulnerable to over exploitation, thus highlighting the potential for the 
role of these animals to be diminished. Jennings et al. (1999) examined long-term 
trends in the abundance of North Sea demersal fishes and demonstrated that those 
species that decreased in abundance compared with their nearest relative matured 
later, grew larger, and had a lower potential for rapid population increase. Many 
important demersal fish stocks (gadoids, sparids, pleronectids, and scorpaenids) 
appear to show limited recoverability after over exploitation (Hutchings 2000). 
We do not have a good understanding of the role of broader community- and 
ecosystem-level processes in the resilience of fish stocks. 

Declining density of a species is usually associated with reductions in both the 
geographic distribution and the size of individuals. Steele & Schumacher (2000) 
discussed the implications for marine food webs of historic fish stocks in the 
Northwest Atlantic possibly being an order of magnitude higher than stocks in the 
last half of the twentieth century. Density changes of this magnitude could result 
in a profoundly altered ecosystem. For example, in the Gulf of Maine, the removal 
of top fish predators through intensive fishing apparently released other predators 
such as crabs and starfish, thus changing the benthic communities (Witman & 
Sebens 1992, Steneck 1997). Frid et al. (1999) also provide an example that links 
changes in the abundance of fish to changes in benthos: Changes in fish biomass 
in the North Sea appear to have resulted in changes in the taxonomic composition 
of benthos consumed by fish and an overall increase in predation pressure on 
benthos. However, such effects are difficult to identify without extensive study; 
tracking effects through marine foodwebs is difficult because of the inherently 
complex interactions and weak and indirect effects (Micheli 1999). 

Fishing can also directly alter the physical habitat by influencing sediment par- 
ticle size, resuspension regimes, and biogeochemical flux rates (Churchill 1989, 
Currie & Parry 1999, Mayer et al. 1991, Palanques et al. 2001). Sediment quality 
is important because of the intimate relationship between particle size and ben- 
thic community structure and function (Gray 1974, Rhoads 1974, Whitlatch 1980, 
Snelgrove & Butman 1994). One study found significant declines in some organ- 
isms (70% for scallops and 20-30% for burrowing anemones and fan worms) 
owing to a scallop-fishing-induced shift in sediment (organic-rich silty sand to 
sandy gravel with shell hash) (Langton & Robinson 1990). Caddy (1973) also 
documented the smothering of suspension feeders as a result of sediment resus- 
pended by fishing. Other effects include modifications to microbial activity (Mayer 
et al. 1991, Watling et al. 2001), resuspension of contaminants, and increases in 
benthic/pelagic nutrient flux (Krost 1990). Trawling-induced resuspension of sed- 
iments in the Gulf of Maine has been hypothesized to have changed the nature of 
nutrient supply from the seafloor with potentially ecosystem-wide consequences 
on phytoplankton growth (Pilskaln et al. 1998). 
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Habitat-Structuring Organisms, Functions, and Biodiversity 
Interactions between hydrodynamic conditions and the benthic habitat drive many 
of the important processes occurring at the sediment-water interface. The increased 
drag created by structures protruding into the near-bed water flow and active feed- 
ing currents generated by suspension feeders influence localized rates of erosion 
and deposition (Eckman & Nowell 1984, Frechette et al. 1989, Shimeta & Jumars 
1991, Dame 1993, Wildish & Kristmanson 1997). Common benthic suspension 
feeders include a diverse array of corals, bryozoans, sponges, gorgonians, seapens, 
echinoderms, brachiopods, and bivalves. Patches of these organisms can further 
modify hydrodynamics over a wide range of spatial scales, significantly influenc- 
ing both the vertical and horizontal flux of food and larvae at the seafloor. Both 
the size of the organisms and the patch are important factors influencing these 
interactions (Green et al. 1998, Nikora et al. 2002). Bivalves expend high levels 
of energy drawing water over their gills to feed (Rhodes & Thompson 1993). 
Thus, suspension-feeding bivalves are capable of actively removing 60-90% of the 
suspended matter from the horizontal particle flux (Loo & Rosenberg 1989). 
These bivalves package any particles that are unsuitable for ingestion in mucous 
and eject them as pseudofeces, thus appreciably influencing the rate of particle 
deposition to the seafloor (Graf & Rosenberg 1997). These processes create vari- 
ation in seafloor ecosystems and add to their biodiversity (Cummings et al. 2001, 
Norkko et al. 2001). 

Organisms that live at the sediment surface, as well as the small-scale distur- 
bances created by benthic-feeding predators, can also increase the three-dimensio- 
nal structure of the habitat. For example, small heterogeneities in sediment topog- 
raphy (e.g., tubes and burrows) and even sparsely distributed epifauna characterize 
most soft-sediment habitats. Such structure at the sediment-water interface, along 
with variations in sediment particle size, is positively related to macrobenthic di- 
versity (Thrush et al. 2001). Spatially these small-scale features are often highly 
variable (e.g., Schneider et al. 1987) and can be important to commercially valu- 
able species (Auster et al. 1995). The shear vastness of the area covered by such 
habitats results in an important role for these small-scale features in biogeochem- 
ical processes and species and habitat diversity, and it is these elements that are 
most susceptible to habitat disturbance by dredging and bottom trawling. 

Highly structured habitats can provide refuges for both predators and prey. Many 
studies show significant variations in predator-prey interactions associated with 
variations in habitat complexity (e.g., Woodin 1978, Ruiz et al. 1993, Irlandi 1994, 
Skilleter 1994). Habitat structure influences predation rates on fish, particularly 
juvenile life stages (e.g., Heck & Thoman 1981, Persson & Eklov 1995, Rooker 
et al. 1998). Topographic complexity can have a significant and positive influence 
on the growth and survivorship of juvenile life stages of commercially valuable 
species, often as a result of reduced risk of predation (Tupper & Boutilier 1995, 
Lindholm et al. 1999). On the Australian northwest shelf, Sainsbury (1988) showed 
a decrease in the number and variety of epifauna, particularly sponges, collected 
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over time as by-catch. This reduction was associated with shifts in the fishery 
from high- to low-value species. A probable explanation was a positive role for 
epifauna in affecting the survivorship of the commercially valuable fish species. In 
many cases the habitats damaged by trawling probably constitute very important 
nursery areas for many species, often including some of the target species of 
fisheries (Turner et al. 1999). 

The importance of habitat-structuring organisms is not restricted to shallow 
water because shelf-break and seamount habitats can exhibit marvelous levels 
of habitat complexity generated by biogenic structure. Even the deep-sea basins 
once considered constant and uniform exhibit high levels of both local biogenic 
complexity (e.g., Jumars & Eckman 1983, Levin & Gooday 1992) and regional 
diversity (Levin et al. 2001). Improved technologies and the demand for fish are 
opening up deep-water habitats to exploitation. Cryer et al. (2002) provide empir- 
ical evidence of the large-scale effects of trawling on a deep-water soft-sediment 
system by demonstrating substantive decreases in the diversity of large benthic 
invertebrates associated with a continental slope (a depth of 200-600-m) scampi 
(Metanephrops challengeri) fishery. This result emphasizes that the impacts on 
seafloor communities that have been more readily documented in shallower water 
are also occurring in deeper water. In these environments effects on biodiversity 
are likely to be exacerbated because deep-sea communities are generally charac- 
terized by life-history adaptations such as slow growth, extreme longevity, delayed 
age of maturation, and low natural adult mortality, and they exhibit slow rates of 
recovery from disturbance. 

Deep-water corals occur in the upper bathyl zone throughout the world and are 
under threat from human activity, particularly fishing and oil exploration (Roberts 
et al. 2000, Rogers 1999). The biology of most of these deep-water coral species is 
unknown, but they appear to have exceptionally slow growth and low reproductive 
rates, with individual colonies being hundreds to thousands of years old (e.g., 
Druffel et al. 1995). These thicket-forming corals are often associated with a 
diverse fauna, and levels of diversity appear to be similar to those of shallow 
water tropical coral reefs. Squires (1965) reports the first detection of a deep- 
water coral structure in the Pacific, at a depth of 320 m on the Campbell Plateau. 
These coral structures generated about 40-m-high relief on the seafloor. Lophelia 
pertusa is a deep-water coral that occurs in discrete patches hundreds of meters to 
several kilometers in diameter, and up to 45 m high. Off Norway and the Faeroe 
Islands Lophelia reefs have several hundred species in association, and with the 
exception of small areas off Norway, most have been heavily damaged (Roberts 
1997). 

Seamounts too have been the focus of intensive deep-water fisheries. In the 
southern hemisphere these fisheries were usually initiated to capture orange roughy 
(Hoplostethus atlanticus). When the New Zealand fishery targeting spawning ag- 
gregations of orange roughy began, the trawls brought up a great deal of benthic 
by-catch, but these levels decreased with repeated trawling (Probert et al. 1997). 
For the orange roughy fishery on seamounts off Tasmania, Koslow et al. (2001) 
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report tonnes of coralline material brought to the surface in a single trawl when 
fishing a new area. Surveys confirmed characterizations of changes in benthic com- 
munities based on by-catch (de Forges et al. 2000, Koslow et al. 2001). These au- 
thors report at least 299 species from a single short seamount cruise near Tasmania; 
24-43% of these were new to science. The benthic biomass from fished seamounts 
was 83% less than from lightly fished or unfished habitats. 

Fluxes, Ecosystem Effects, and Biodiversity 
Sediments play important roles in transformation and exchange processes of or- 
ganic matter and nutrients. For example, sediments on marine continental shelves, 
while occupying only 7% of the area of the planet covered by marine sediments, are 

responsible for 52% of global organic matter mineralization. Slope sediments (i.e., 
200-2000-m depth, 9% area) remineralize another 30% (Middleburg et al. 1997). 
These disproportionately large contributions to organic matter mineralization re- 
flect the importance of biological activity within marine sediments influencing so- 
lute and particle transport. By enhancing the transport of labile particulate organic 
carbon to subsurface layers within the sediment, organisms stimulate anaerobic 
degradation and so affect the form and rate at which metabolites are returned to the 
water column (Herman et al. 1999). The seas above continental shelf environments 

typically receive one third to half their nutrients for primary production from sedi- 
ment (Pilskaln et al. 1998). These nutrients are derived from organic matter decay 
and nutrient remineralization within the sediments, followed by molecular diffu- 
sion or biological irrigation back into the water column. The process of sediment 

manipulation by resident animals (i.e., bioturbation) is the dominant mode of sed- 
iment transport in the upper centimeters of oceanic sediments (Middleburg et al. 
1997). Solute pumping, burrowing, and feeding increase the area of the sediment- 
water interface (Aller 1982). Bioturbation affects the stability and composition 
of marine sediments and influences their role as geochemical sources and sinks 
(McCall & Tevesz 1982, Marinelli 1994, Bird et al. 1999). Thayer (1983) exten- 

sively reviewed estimates of the rate of bioturbation for a wide variety of marine 

organisms, with rates of sediment reworking ranging from 5 x 10-5 to 2.1 x 
106 cm3 day-1 per individual and depths to which sediment was reworked ranging 
from 0.1 to 400 cm. Larger organisms play a particularly important role in influ- 

encing sediment-reworking rates (Thayer 1983, Sandnes et al. 2000). Typically 
animals increase the particle exchange between water and sediment by a factor of 
2 to 10 (Graf 1999). 

Direct disturbance of the seafloor enhances the upward flux of nutrients by 
releasing pore-water nutrients as a pulse, rather than a more steady release con- 
trolled by bioturbation (Pilskaln et al. 1998). Fanning et al. (1982) estimated that a 
storm that imposed sufficient energy on the seafloor to resuspend the top 1 mm of 
sediment could intermittently augment overlying productivity by as much as 100- 
200%. This depth of sediment disturbance is much less than what occurs as a result 
of many types of trawling and dredging. Dredges usually disturb the top 2-6 cm of 
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sediment, while the doors that hold open trawl nets in the water can plough furrows 
from 0.2-2 m wide and up to 30 cm deep in the sediment (e.g., Caddy 1973, Jen- 
nings & Kaiser 1998, Krost 1990). However, it is not appropriate to equate storm 
disturbances with fishing because the latter may involve a much higher intensity of 
disturbance, although its frequency and extent will be highly location dependent. 

The rate and efficiency of bioturbation processes are determined by interac- 
tions between organisms and between the organisms and their environment. The 
degree of particle flux enhancement varies with faunal composition and density 
(Cadee 1979, Thayer 1983) in conjunction with organic carbon flux to the sedi- 
ment (Legeleux et al. 1994). Interactions between bioturbation and mineralization 
processes in sediments are highly nonlinear and are characterized by the presence 
of strong feedback loops between deposit feeders, their food, and their chemical 
environment (Herman et al. 1999). Variation in large burrow structures and animal 
activity can result in markedly different biogeochemical fluxes, in terms of both 
rates and chemicals (Hughes et al. 2000). As well as influencing water column 
production, bioturbation can also affect the growth of benthic species that use 
this resource (Weinberg & Whitlatch 1983). Deposit-feeding typically controls 
the biological mixing of near-shore and, probably, deep-sea sediments. Soetaert 
et al. (1996) measured and modeled the total flux of 210Pb entering the sediment 
(used as a marker of particle transport) along a transect from 208-4500 m over the 
Goban Spur in the northeast Atlantic. Their analysis showed that between 8 and 
86% of the particle flux was derived from nonlocal exchange processes (i.e., active 
pumping/flow through burrows), with these processes most important in shallower 
waters where trawling is most intense. 

Apart from burrowing and actively pumping water and particles through bur- 
rows, animals can also influence fluxes by modifying surface sediment topography, 
which then interacts with sediment boundary water flows. Huettel et al. (1996) 
demonstrated how shrimp mounds protruding from sandy sediments can alter flow 
patterns to increase the flux of fine particulate matter into the sediment. Small pres- 
sure gradients generated by boundary flow-topography interactions also increase 
the flux of oxygenated water into the pore waters of sandy sediments, thus in- 
creasing the oxic volume of the sediments and affecting biogeochemical processes 
(Forster et al. 1996, Ziebis et al. 1996). 

From these studies it is clear that bioturbation is important in ecosystem func- 
tioning. There is some evidence that bioturbation has been a significant factor 
influencing the evolution and enhancement of marine biodiversity over geological 
time scales. Regeneration of nitrogen from the seafloor may exceed inputs from 
freshwater in the coastal zone (Rowe et al. 1975). The faster recycling of nutri- 
ents by increased rates of bioturbation over evolutionary time scales may have 
contributed to the diversity of phytoplankton and zooplankton in the Mesozoic 
(Thayer 1983). Martin (1996) contends that elevated nutrient levels associated 
with increased rates of ocean circulation, continental erosion, and bioturbation have 
played a key role in enhancing the productivity and diversity of marine systems 
over the Phanerozoic (i.e., essentially post-Precambrian). 
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Implications for Research and Biodiversity Management 
We have tried to synthesize the effects of fishing disturbance on the biodiversity 
of the seafloor by reviewing studies of direct effects and discussing the functional 
roles of soft-sediment organisms. In doing this we have summarized immediate 
effects that include changes in species diversity and ecosystem processes, habitat 
modification, and loss of predators. Because of the high variability within and 
between studies, there is no single definitive study that adequately describes the 

range of impacts of fishing disturbance. Nevertheless, there is evidence of effects 
on seafloor communities that have important ramifications for ecosystem function 
and resilience. 

Whereas gathering good data on the magnitude and extent of disturbance at 

appropriate spatial scales is important, from both a scientific and management 
perspective, we have moved beyond the question of what the immediate effect 
of habitat disturbance by fishing is and now need to focus on the implications of 
loss of structural and functional biodiversity over various space and timescales. 
Pitcher (2001) argues that the only hope for fisheries themselves is to move their 

management to a focus on ecosystem rebuilding. He contends that the goal of 
sustainable yield of single species in a fishery is a fundamental mistake. The 

potential for the change in functionally important ecosystem processes leads us 
to ask very broad questions and test the generality of many fundamental theories. 
The themes of scale, complexity, resilience, and strong coupling of physical and 

biological processes in marine benthic ecosystems are pervasive. 
We have emphasized the functional roles of marine benthic organisms. To de- 

velop this theme further we need a much better understanding of the basic ecology 
of these species, how their ecosystem roles may be modified by their size, den- 

sity, and spatial arrangement, and how these characteristics enable them to cope 
with disturbance. The integration of small-scale variation into broader patterns 
is important because we should expect threshold effects and nonlinearities in the 

multispecies biotic and environmental processes that create biodiversity. For ex- 

ample, differences in density and species among a functionally similar group of 
bioturbators can result in different effects on biodiversity (Widdicombe & Austen 
1999, Widdicombe et al. 2000). The potential for different responses of macroben- 
thic assemblages to the presence of a large epifaunal bivalve under a number of 
different physical regimes and local species pools has also been demonstrated 
(Cummings et al. 2001). We must use natural history and environmental informa- 
tion to both design and interpret mechanistic studies because responses are usually 
scale dependent (Thrush et al. 1999). Standing back from the detail and looking 
for more general and abstract patterns also provides a basis for revealing emergent 
phenomena (Brown 1995). 

Natural systems have a great deal of structure in time and space, and it is 

important to identify thresholds of change in this structure and the processes it 
influences to gauge ecosystem resilience. This means that our predictions of the 

ecological consequences of human activity in the marine environment require an 
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understanding of broad-scale forcing functions as well as knowledge of the natural 
and life-history characteristics of individual species. The removal of small-scale 
heterogeneity associated with the homogenization of habitats is, by definition, loss 
of biodiversity. We argue this is important even over the extensive sand- and mud- 
flats of the seafloor that are often considered "featureless." Spatial mosaics that 
result from local biological disturbance events, as well as the organisms that create 
them, can be obliterated by intense broad-scale disturbances. There are winners 
and losers in the ecological response to any disturbance, but a key issue is un- 
derstanding ecological heterogeneity and its role in modifying the consequences 
of habitat disturbance to ecosystem processes. We need to better understand the 
implications of natural and anthropogenic habitat fragmentation and how it relates 
to the intensity and frequency of disturbance. Empirical and theoretical studies 
addressing this issue will need to integrate biogeochemistry, hydrodynamics, and 
ecology. Site history and the effect of multiple stresses will be particularly impor- 
tant in many areas in order to address the role of the resident species assemblage 
and environmental context in affecting disturbance-recovery dynamics in frag- 
mented habitats. Once the functionally important components of an ecosystem are 
missing, it is extremely difficult to identify and understand ecological thresholds 
that are violated beyond the point of recovery, at which point the anthropogenic 
disturbances are less obvious. Some knowledge of these issues will be necessary 
to address the more fundamental question, "At what point are there ecosystem 
thresholds beyond which recovery is unlikely?" Ecological systems can shift into 
alternative states as a result of the loss of ecosystem functions, and we must be 
able to assess the consequences of these shifts in terms of loss of diversity and 
ecological services (e.g., Carpenter et al. 1999, Scheffer et al. 2001). 
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