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ABSTRACT: Processes interacting across scales of space and time in-
fluence emergent patterns in ecological systems, but to obtain strong
inference and empirical generalities, ecologists need to balance reality
with the practicalities of design and analyses. This article discusses
heterogeneity, scaling, and design analysis problems and offers potential
solutions to improve empirically based research. In particular, we rec-
ommend bridging the dichotomy between correlative and manipulative
studies by nesting manipulative studies within a correlative framework.
We suggest that building on variation, by designing studies to detect
variability, rather than fighting it often leads to an increase in generality.
We also emphasize the importance of natural history information for
determining likely scales of spatial and temporal heterogeneity and the
probable occurrence of feedback loops, indirect effects, and interacting
processes. Finally, we integrate these concepts and suggest planned
iterations between multiscale studies to build up natural history in-
formation and test the strength of relationships across space and time.
This offers a way forward in terms of heuristically developing models
and determining ecological generalities.

Keywords: scale, heterogeneity, empirical studies, interacting pro-
cesses, study design, analyses.

Scale and heterogeneity in space and time have been ac-
knowledged as important issues in ecology for many years
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(Pielou 1977; O’Neill et al. 1986; Levin 1992; Belovsky et
al. 2004). The associated problems for scaling study results
and assessing the validity of generalities across space and
time have also been extensively discussed in the literature,
for both empirical and modeling studies. Indeed, Lawton
(1999) has concluded that the study of community ecology
is dead because the complexity of ecological systems does
not allow generalities to be developed.

Despite the recognition of the problems associated with
scaling across heterogeneous systems, the designs and anal-
yses of empirical ecological studies remain largely un-
changed. Small-scale mechanistic experiments carried out
in a few randomly selected locations and analyzed by cat-
egorical statistical methods still represent the majority of
studies. There are a number of reasons, one of which is
the reductionist approach, which seeks to reduce the var-
iability encompassed by field studies at all levels. The
strong emphasis on experimental manipulations in as-
signing causality and the practicalities of conducting ma-
nipulations across scales are also important. Moreover,
statistical requirements (e.g., random collection of inde-
pendent samples) can be at odds with the need to conduct
studies within an understanding of natural history and
environmental context (Futuyma 1998; Dayton 2003).

Although many advances have been made using small-
scale manipulative experiments, many ecological systems
are not easily reduced and manipulated. Emergent prop-
erties of such systems are context dependent and are pro-
duced by direct interactions and feedbacks that can operate
across scales in spatially and temporally heterogeneous en-
vironments (DeAngelis and Waterhouse 1987). While this
very complexity makes these systems exciting to study
(Simberloff 2004), obtaining strong inference and gener-
ality requires new designs, analyses, and careful interpre-
tation of empirical studies (Thrush et al. 2000; Simberloff
2004). This is not solely a problem for empirical studies
because such studies provide the parameters, connections,
rate estimates, and concepts for use in both the devel-
opment and the validation of theoretical and statistical



models. If the data provided for models are scale or context
dependent, then the model, although attempting to in-
tegrate over a number of scales, will be limited.

Working across scales can have a number of goals and
encompass a variety of approaches: scaling through levels
of biological organization (e.g., species to ecosystems),
scaling between fine-scale measures and coarse-scale rep-
resentations of the same variables, and extrapolating the
effects of experiments conducted at a few locations or
times to a more general set of conditions. Here we focus
on generality and the effect of spatially and temporally
heterogeneous processes acting at multiple scales on the
bounds of extrapolation. While our examples are marine,
the lessons apply equally to many fields of terrestrial and
freshwater ecology.

Our purpose is to discuss means of empirically studying
complex ecological processes. We review major problems
posed for experimental design and analysis and, from the
many studies available on design and analysis, derive prac-
tical guidelines for empirical ecologists. These guidelines
rely on multiscale theory, which acknowledges that pro-
cesses can operate over a continuum and interactions can
occur across scales, for example, local relationships af-
fecting broadscale processes (see Wu et al. 2000; O’Neill
2001; Denny et al. 2004). Another important element of
our synthesis is an emphasis on incorporating natural his-
tory information and environmental context into design
and interpretation.

Integrating Natural History and Environmental
Context into Studies

Studies conducted in complex ecological systems fre-
quently exhibit results that are difficult to interpret. How-
ever, the collection of natural history information or in-
formation on the surrounding environment often aids
understanding. The type of information that will be useful
is generally dependent on how spatial and temporal pro-
cesses interact.

For example, feedback loops between large-scale vari-
ability in environmental conditions (e.g., variation in re-
sources) and ecological processes (e.g., predation) can re-
sult in indirect effects on spatial patterns in community
composition and trophic dynamics. Dayton et al. (1974)
demonstrated such linkages in the coastal community of
McMurdo Sound, Antarctica, between the sea stars Aco-
dontaster conspicuous (a sponge predator) and Odontaster
validus (an omnivore, consuming both benthic primary
production and Acodontaster). In areas with high benthic
primary production, Odontaster reached densities suffi-
cient to limit Acodontaster abundance. In both shallow-
water areas with low benthic primary production and
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deeper areas, Odontaster were rare and Acodontaster pre-
dation was sufficient to control sponge distributions.
Counterintuitive and variable results often result from
spatially and temporally variable processes interacting with
each other. Thrush et al. (1994) observed seasonally var-
iable and counterintuitive decreases in abundance of prey
species from a predator exclusion experiment. A series of
studies on the natural history of both predators and prey
explained the results as follows: (a) predation rates, spatial
scales of feeding, and predator species varied over the year
(shore birds [winter-spring] and eagle rays [summer;
Cummings et al. 1997; Hines et al. 1997]) and (b) the
major prey item of both was adult Macomona liliana, con-
specific juveniles of which are highly mobile and avoid
adults (Cummings et al. 1993; Thrush et al. 1996a).

Implications of Scale and Heterogeneity for
Common Empirical Study Designs

Manipulative Experiments

The overwhelming advantage of manipulative experiments
is their strict application of the hypothetico-deductive
method. A specific hypothesis is stated and tested in such
a way that the hypothesized mechanism is isolated from
other potential mechanisms. However, scale and hetero-
geneity can cause a number of problems. First, variance
in ecological systems tends to increase with spatial and
temporal extent (Schneider 1994). Thus, experiments de-
signed to encompass larger scales need to increase repli-
cation to control variability. Second, many aquatic species
move actively or passively, and high lateral flux rates may
swamp small-scale demographic or biotic processes and
potentially confound small-scale field experiments
(Schneider et al. 1997; Englund and Cooper 2003). How-
ever, passive movement generated by environmental forces
is often not strong or persistent enough to override bio-
logical processes (Barry and Dayton 1991; Schneider 1991;
Hewitt et al. 19974). Thus, a key to successful experi-
mentation is to account for both the degree of mobility
of organisms and their ability to make an active habitat
choice. Third, there are problems with generalizing results
from studies conducted at one or a few locations or times,
as broadscale processes can affect the outcome of small-
scale processes, even to the point of changing the direction
of responses (Smith and Brumsickle 1989; Greenlee and
Callaway 1996; Thrush et al. 1996b). The importance of
constraints to experimental outcomes becomes more ap-
parent as a greater range of locations in space and time
are studied (Bertness and Callaway 1994; Dayton et al.
1998; Thrush et al. 2000).
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Correlative Studies

Properly designed correlative studies solve most of the
problems noted for manipulative experiments, as they are
more easily conducted over larger scales and are generally
designed to incorporate spatial or temporal heterogeneity.
Their major problem is not related to scale or heteroge-
neity but is the potential for spurious correlations to affect
inferential strength (Eberhardt and Thomas 1991; Peters
1991). However, assigning causality is not the exclusive
domain of manipulative experiments (Hill 1965; Rigler
1982; Peters 1991), even though, as Fabricius and De’ath
(2004) note, that is the perception of many empirical ecol-
ogists. Gradients in the strength of effect and consistency
among studies are often used to infer causality in medicine
(e.g., epidemiology; Susser 1986; Fox 1991). Plausibility,
that is, a general theory or accepted mechanism to account
for effects, is used in physics and oceanography. Analogy
(i.e., similar causes leading to similar effects) can also be
used as a line of evidence.

A Way Forward

The need for rigorous design of ecological studies has fre-
quently been highlighted (e.g., Eberhardt and Thomas
1991; Underwood et al. 2000; Legendre et al. 2004). Un-
fortunately, rigor is often defined as a design philosophy
rather than a desire to increase generality by improving
the understanding of the processes that underpin rela-
tionships. Statistically, random samples ensure generality
but only within the population sampled. Ecologically, if
random sampling is not conducted over large scales with
high replication, then generality of results is unlikely. Thus,
the careful selection of site locations along gradients (or
among strata) and study scales (extent, lag, grain, and
resolution) is needed. Measurement of variables that rep-
resent possible confounding or explanatory factors is also
important. This enables spatial and temporal variability to
be converted from noise into useful information so that
we can understand why responses vary from location to
location (rather than simply documenting that nature is
variable). By doing so, it allows the study results to be
extended from a specific location (Cottenie and De Mees-
ter 2003) to more general situations (Thrush et al. 2000;
Belovsky et al. 2004).

Statistical methodology alone should not drive ecolog-
ical studies; a relevant question addressed at an appropriate
scale is of more use than a superbly designed but small
experiment answering an irrelevant question (Dayton and
Sala 2001; Oksanen 2001; Cottenie and De Meester 2003;
Belovsky et al. 2004). An important first decision for any
ecological study, therefore, is whether to use a manipu-
lative experiment or a correlative study, a decision that

has to balance any lack of ability to extrapolate from the
former against the lack of causality/inferential power as-
sociated with the latter (fig. 1). While the faults of both
can be strengthened by integration of an underlying mech-
anism and knowledge of the natural history of the organ-
isms (Dayton and Sala 2001; Belovsky et al. 2004), we
suggest that nesting small-scale experiments into a broad-
scale correlative framework is frequently best. In many
systems, this will improve predictive power and result in
stronger generalities (fig. 1).

There are a number of ways that manipulative and cor-
relative studies can be combined. First, experiments can
be nested within measured larger-scale patterns (Schneider
1978; Wiens 1989; Menge et al. 1994), broadscale envi-
ronmental gradients (Keddy 1991), or temporal cycles. For
example, large-scale kelp forest experiments replicated in
space (Dayton et al. 1999) found consistent patterns. How-
ever, replication in time resulted in very different exper-
imental outcomes. Correlation with El Nifio—Southern os-
cillation oceanographic conditions revealed a strong
linkage between temperature/nutrients and long-term
patch structure of macroalgae.

Second, companion experimental manipulations and
surveys may be carried out over the same extent, to de-
termine whether experimental responses (or lack of them)
are related to the experimental scale. For example, Bell et
al. (1995) conducted a multisite experiment on drift algae
accumulation in sea grass beds at two different scales and
matched the results with a survey of macroalgal abundance
in natural sea grass beds. Thrush et al. (2001) integrated
a multisite time-manipulative experiment on the density
of Atrina zelandica (an epifaunal bivalve) with a multisite
survey of Atrina and infaunal densities in the same lo-
cation. Similar environmental variables affecting the re-
sults of both experiments and surveys justify expansion of
the scale over which results of the experiment are valid.

Third, a series of studies may be conducted within an
integrated framework (Eberhardt and Thomas 1991). This
is often the most practical method, allowing the buildup
of information from small studies. However, care has to
be taken to build an overarching framework; otherwise,
individual studies never connect. It is also important to
recognize the limitations of early studies, which frequently
have to be conducted with little ecological/environmental
context. Indirect effects generated by feedbacks and spatial
or temporal variability in direction and strength of eco-
logical responses generally emerge later in the research
processes. For example, Bonsdorff and coworkers (Bons-
dorff 1992; Bonsdorff et al. 19954, 1995b; Norkko and
Bonsdorff 19964, 1996b, 1996¢) conducted a series of stud-
ies in the Archipelago Sea in southwest Finland ranging
from surveys and field experiments to laboratory experi-
ments. This work included interactions between predators,
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(a) In a low complexity system, the small
extent that manipulative experiments

are conducted over is not a drawback.
The high degree of inferential strength
of such studies results in a better

ability to extrapolate from them than
from correlative studies conducted

over small - medium extents.

(b) In systems of high complexity,
however, processes interacting over
a variety of scales reduce the ability
to extrapolate from small-scale (grain
or extent) manipulative experiments.
The ability to extrapolate from
correlative studies, is unaffected

by complexity.

Figure 1: Illustration of the relationship between study designs, system complexity, environmental extent, inferential strength, and the ability to
extrapolate to larger scales and enhance generality across environments/systems. The figure demonstrates that manipulative experiments, when they
are possible to use and control, are the cornerstone of strong inference (Platt 1964), but in some systems, inferential and extrapolative strengths

can be gained through integrated correlative studies.

drifting algae, and infaunal communities associated with
eutrophication. Early evidence pointed at purely negative
effects of drifting algae on the benthic community, whereas
later studies pointed at potential benefits for certain or-
ganisms, through the provision of secondary habitats
(above the sediment surface) or substrate for rafting, en-
hancing the potential for dispersal of sediment-dwelling
organisms (Norkko et al. 2000; Salovius et al. 2005).

Making Decisions about Study Design and Integration

But how can we decide when integrated studies are es-
sential? Haury (1978) effectively modified the original con-
cept of Stommel (1963) to demonstrate that planktonic
studies should concentrate more on collecting longer-term

coarse-scale information to determine how hydrodynam-
ics and biotic processes interact to form and maintain the
patterns that define the ecosystem. The Stommel diagram
plots variability in processes against increases in space and
timescales. Employing this concept, we can be guided by
a series of questions (box 1), together with natural history
information, in the choice of study designs (fig. 2). It is
important to note that while ecologists often do not have
in-depth information on spatial and temporal variability,
informed guesses can help guide the decision-making pro-
cess. When in doubt, we advocate for an awareness of the
value of multiple strands of evidence derived from differ-
ent approaches encompassing different scales of hetero-
geneity rather than a reliance on a single manipulative
experiment.
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Box 1: Questions relevant to selecting
study design

1. What is the range of scales over which the studied process causes
variability? The processes under study should not cause high var-
iability at spatial scales larger than the experimental scale for
periods shorter than that of the study duration (Haury 1978).
The temporal equivalent is that processes under study should not
cause high variability over time periods longer than the study
duration at spatial scales smaller than that of the study.

2. Do other processes interact with the process of interest? These
can be important in a number of ways: (a) high mobility or strong
temporal variation in abundance of organisms interacts with the
response to process under study; (b) emergent patterns depend
on broader-scale processes to be enacted (e.g., postsettlement
transport controlled by hydrodynamic processes can influence
adult-juvenile interactions; Thrush et al. 2000); (c) broadscale
gradients in other factors affect the outcome (e.g., stress-induced
switches between facilitation and inhibition; Bruno et al. 2003);
(d) other processes cause high variability at scales similar to those
of the process of interest, leading to difficulty in correctly isolating
mechanisms; (e) feedback loops at a scale similar to or smaller
than that at which the process of interest has high variability (e.g.,
density of epibenthic organisms affecting broadscale hydrody-
namics through surface roughness or feeding currents).

Many ecologists have been concerned with the role of
change in variability in affecting ecological processes (e.g.,
variance-mean relationships [Taylor 1961] and density-
vague relationships [Strong 1986]). Recently, the explicit
incorporation of variance at the treatment level in ma-
nipulative experiments has been employed (Benedetti-
Cecchi et al. 2005). While insightful, this approach still
suffers from the scale limitations generated by most ma-
nipulative experiments (see debate between Inouye [2005]
and Benedetti-Cecchi [2005]). Integrating experimental
manipulations into larger-scale landscapes of density var-
iation in the species of interest (e.g., Thrush et al. 1997)
is a practical solution to the problems identified by Inouye
(2005).

Implications of Scale and Heterogeneity
for Common Analyses

Spatial and Temporal Heterogeneity

An increasing number of analytical techniques have been
developed, both to deal with the effects of spatial and
temporal heterogeneity and to enhance our ability to an-
alyze new study designs. Important developments include
increased ability to use continuous rather than categorical
variables, to partition variance between a number of mea-
sured explanatory variables, and to use different null mod-
els (e.g., nonindependence of samples due to temporal or
spatial autocorrelation).

While improvements have been made to ANOVA (e.g.,
allowing the incorporation of spatial correlation), the tech-
nique is still limited in its utility to, for example, simple
experimental designs that are not confounded by other
scales of variability. When the categories actually form a
gradient (e.g., depth, concentration), categorical analyses
such as ANOVA can be particularly insensitive (Ellis and
Schneider 1997; Somerfield et al. 2002; Cottingham et al.
2005).

Continuous analyses (e.g., ANCOVA, regression) can be
used for most study designs, including manipulative ex-
periments (Thrush et al. 1997). A major advantage of anal-
yses based on continuous variables is that measures of
other potentially important variables can be easily incor-
porated and variability can then be separated into that
associated with the main variable of interest, other mea-
sured variables, and noise, allowing clearer identification
of effects. This is particularly important because a number
of articles have demonstrated that treating all variance,
except the factor(s) of interest, as noise is not efficient
because this variation can contain useful information (e.g.,
Legendre 1993; Osenberg and Schmitt 1996; Hewitt et al.
2001). For example, spatial and temporal variability in
populations and communities can be decomposed into
that associated with environmental variables of interest
and that which is purely spatial or temporal or both (Bor-
card et al. 1992; Legendre et al. 1997; Anderson and Grib-
ble 1998).

Initially, techniques for exploring relationships between
continuous data were limited to linear relationships (or
those that could be transformed to linearity) with normal
error structures. But procedures allowing other types of
error structures and a variety of ways for exploring non-
linear relationships have increased (for a review, see Miller
et al. 2004). Fitting complex curves (e.g., techniques such
as splines, general additive models) or multiple breaks
(e.g., regression trees) to data frequently results in a high
degree of explanatory power, although there is a high po-
tential for overfitting (Venables and Ripley 2002). Impor-
tantly, ecologists must decide whether the complex curve
or resultant tree makes any ecological sense, a decision
that will be based on understanding natural history, en-
vironmental heterogeneity, and ecological processes.

Another area of concern in analysis is the form of the
null model. First, although concern over the noninde-
pendence of samples due to spatial patterns has been raised
in ecology for many years, many ecological studies still
use analyses based on a null model of randomness, relying
on techniques to remove effects of spatial or temporal
correlation. However, inclusion of spatial or temporal in-
formation into null models (e.g., autoregressive moving
average models) makes intuitive sense in many situations
and increases the sensitivity of analysis (Hewitt et al. 2001;
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Figure 2: Flowchart demonstrating method for deciding study design, based on answers to questions in box 1 (designated in boxes).

Stewart-Oaten and Bence 2001; Legendre et al. 2002). Sec-
ond, regressions based on mean responses may not detect
a relationship when a clear pattern can be observed in the
scatterplot (Blackburn et al. 1992; Thomsen et al. 1996).
Recently, quantile regression has allowed us to progress
from investigating mean responses to investigating con-
straining factors and defining envelopes in which certain
sets of interactions occur (Scharf et al. 1998; Cade et al.
1999). Quantile regression also offers a new way to in-
vestigate variance in population responses and interactions
between processes (Cade et al. 2005).

Effects of Scale

The effect of scale on the development of analyses has
been equally important and will be discussed here in three
categories: direct analysis of scale effects, development of
techniques to move between scales, and statistical model
validation. Scale effects can be analyzed by studies that
directly or indirectly incorporate scale into their design.
Scale can be incorporated directly into both experimental

manipulations (e.g., Smith and Brumsickle 1989; Thrush
et al. 1996b; Whitlatch et al. 1997) and correlative studies
(e.g., Hatcher 1989; Hodda 1990; Hewitt et al. 1997b).
Further gains in understanding have also been made by
comparing results from manipulative and correlative stud-
ies. For example, the interaction between experimental
plot size used by Cummings et al. (2001) and the effect
of a habitat-forming species on macrofauna were illus-
trated by including analyses on the effect of plot size (Hew-
itt et al. 2002). The effect of scale can also be analyzed
indirectly by incorporating variables measured at different
scales as additional explanatory factors (e.g., Keddy 1991;
Thomsen et al. 1996).

There is a large amount of literature focusing on formal
mathematical techniques for scaling functional relation-
ships and for translating results from one resolution to
another (see, e.g., Schneider 1994; Jones and Lawton 1995;
Englund and Cooper 2003; Seuront and Strutton 2003 and
references therein). Techniques vary from the use of frac-
tals to extrapolation by expected value, explicit integration,
and scale transition theory (King 1991; Rastetter et al.
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1992; Borda-de-Agua et al. 2002; Melbourne and Chesson
2005). While these techniques are far too varied to ade-
quately summarize here, our focus provides insight into
a major problem. Such techniques rely largely on the as-
sumption that a full range of interactions between pro-
cesses and responses at different resolutions has been ob-
served. This clearly is a problem for data derived from
location- and time-specific empirical experiments. Even
sophisticated scaling techniques will be scale dependent if
only a limited range of the actual heterogeneity has been
captured. For example, Melbourne and Chesson (2005)
emphasized the need to identify key interactions between
nonlinear responses and spatial variation when scaling up
from local interactions to large-scale outcomes in popu-
lation dynamics.

Statistical models represent emergent relationships de-
termined by the grain, lag, and extent of the data modeled,
and such models can often be developed even when the
underlying mechanisms are complex and difficult to un-
ravel. There are a variety of ways of validating regression
models (Olden and Jackson 2000); often paired samples
are collected, and one sample from each pair is used to
build the model, or half the data are selected using a strat-
ified random protocol to derive the model, and the other
half are used to test the model. Such tests are useful but
do not assess general applicability or spatial and temporal
space dependence of processes (Ysebaert and Herman
2002). Rather than model performance merely being
checked at the scale used to build the model, performance
should be assessed with independent data collected at
scales different from those from which the model was
derived (Thrush et al. 2005).

Analyzing Integrated Studies

Analysis of integrated studies can be undertaken statisti-
cally or more informally. Meta-analyses can be particularly
useful for statistically analyzing integrative studies and for
summarizing results of similar experiments conducted at
different places and times (Rosenthal 1991; Gurevitch and
Hedges 1993; Oksanen 2001). Meta-analysis, at its sim-
plest, can statistically combine the statistical significance
of individual studies. However, depending on the similarity
between studies and the information available, the analysis
can be used to determine whether variability in results of
the individual studies can be explained by other measured
factors (Downing et al. 1999). The ideal analysis is one
based on identical experiments conducted along gradients,
for example, when slopes of the relationship between adult
and juvenile densities found in a number of identical ma-
nipulative experiments were regressed against broadscale
measurements of wave energy (Thrush et al. 2000).
Studies to be used in meta-analysis do not have to be

identical. Osenberg et al. (1999) discusses a number of
applications of meta-analysis with respect to five sources
of variation among studies. Their conclusions are that se-
lecting the series of studies used in the analysis and de-
veloping the metric that is to serve as the measure of
ecological response are important issues affecting results.
We suggest that problems of bias resulting from the process
of selecting studies for inclusion in meta-analysis, noted
by Englund et al. (1999), can be minimized when working
with studies that were carefully developed within an in-
tegrated framework and intended to be analyzed by meta-
analysis (Thrush et al. 2003).

Informal integration of studies can be as simple as using
the results of one study in the design of another or con-
ducting another study to answer a question raised specif-
ically by a previous one. However, results from a number
of studies can also be analyzed to determine the frequency
of similar responses (Mittelbach et al. 2000) or to construct
multiple lines of evidence. For example, Fabricius and
De’ath (2004) use information from a series of laboratory
and field studies to assess the effect of agricultural pol-
lution on the Australian Great Barrier Reef.

We have emphasized empirical studies that assess the
strength of local interactions, feedbacks, and nonlinearities
and estimate rate and functional responses. While this
information is useful in developing models, leading to
improved predictions (e.g., Mooij and DeAngelis 2003),
use of an iterative framework of empirical studies and
model building will lead to substantive gains for ecologists.
Models can be used to indicate the potential for endpoints
to be particularly sensitive to the scale dependence of pro-
cesses (Levin 1993; Perry 1995; Clark et al. 2001) and how
the relative importance of processes changes with scale.
Complex system models, in particular, allow exploration
of the effect of past history and conditions on present
ecological processes and responses (Grimm et al. 2005;
van de Koppel et al. 2005). Empirical studies can then test
the predictions and develop new information for incor-
poration into the models.

Conclusions

Ecologists generally acknowledge the importance of scale,
but few empirical studies explicitly measure and discuss
the effects of scale on their results. There is a perception
that detailed understanding requires manipulative exper-
iments, even though practicalities, ethics, and funding usu-
ally limit them to assessing effects at small scales over a
limited range of spatial and temporal heterogeneity. If the
issue of scale has not appreciably changed study designs,
acknowledgment of its importance is superficial, and it
would appear that there are major stumbling blocks to



studying the complexities that scale and heterogeneity
bring to ecology.

We suggest that there are a number of techniques that
currently offer a way forward to strengthen ecological gen-
eralities. First, natural history information should be used
to suggest the likelihood and scale of spatial and temporal
heterogeneity, feedbacks, indirect effects, and interacting
processes. Second, correlative studies should be integrated
with manipulative experiments and designed cognizant of
environmental heterogeneity. Third, while long-term re-
search projects are frequently difficult to fund, planned
iterations between integrated studies can be used to in-
crease natural history information and slowly build both
conceptual models and quantitative information of system
linkages. Fourth, analytical techniques, wherever possible,
should use continuous explanatory variables, and analyses
across studies should be used to determine reasons for
variable results. Finally, iteratively integrating models with
empirical studies offers a way to develop and test ecological
generalities.

We believe that advances in the way that ecologists de-
sign experiments and analyze complexity and variability
across scales will invigorate community ecology. Impor-
tantly, these advances will also help ecologists address
pressing large-scale questions associated with habitat de-
struction and fragmentation, climate change, and eutro-
phication and the implications of these threats for bio-
diversity loss and changes in the delivery of ecosystem
services. We are confident that our suggested guidelines
for design and analysis will enable ecologists to answer
such questions.
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